
HTMX language and
expandfile

Tom Van Vleck

v28 – 10 Jun 2023

x.htmx

Overview

expandfiletemplates

config

output

§HTMX is an extension language for HTML
§expandfile can run offline or online
§Can produce any format of output, not just HTML

data
(optional)

x.htmx
y.htmi

x.html

conf.htmi

HTMX Benefits
• Simplify features of HTML.
• Avoid errors.
• Edit one file instead of many:
– Standard headers, footers, values.
– One file can depend on another’s content.
– One file can depend on another’s attributes.

• Fill in values automatically.
• Can still use any HTML feature.

• Pages are statically generated offline.
• No security holes introduced.

HTMX Example 1
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>%[titlestring]%</title>
%[*include,=mxstdfmt.htmi]%
%[*include,=linktags.htmi]%
%[*include,=h1style.htmi]%
</head>
 <body>
 <div class="outer">
%[*set,&headingtitle,="Phase One"]%
%[*set,&headingdate,="25 Jul 1995"]%
%[*include,=class2head.htmi]%

. . .

•Contents of %[…]% are expanded. The rest is copied.
•Expansions beginning with * perform built-in functions:
•Assign %[*set,&var,value]%
•Include file %[*include,=filename]%

HTMX Example 2
%[*set,&title,="My Fish Story"]%
%[*block,&content,^END]%
 <p>This is a story called %[title]%.
 It will get standard head and foot.
 </p>
END
%[*include,=story-template.htmi]%

Sets variable title to the string “My Fish Story”
Sets variable content to the block of 3 lines before END.
Reads and expands macro file story-template.htmi
which expands the values of variables title and content
and wraps the content with a standard heading and footer.
Design templates once and use them in many pages.

HTMX Builtins Can…
• Assign and modify variables.
• Include other HTMX files, which may contain

variable references or macros.
• Execute programs and use their output.
• Perform conditional tests.
• Write data to files for later inclusion.
• Use values from configuration files and

environment variables.
• Use information from database or file system.

HTMX example 3
%[*shell,&humordate,=filemodshort multics-humor.htmx]%
%[*shell,&humorK,=filesizek ../multics/multics-humor.html]%
%[*set,&age,=fileagedays ../multics/multics-humor.html]%
%[*set,&humoru,=""]%
%[*if,>,9,age,*set,&humoru,updatedflag]%

<dt>Humor
 %[humoru]%</dt>
<dd>Jokes about Multics.
 (%[humorK]%K, 1 picture, %[humordate]%)
</dd>

1. Set variable humordate to the date a file was modified. (External program
filemodshort returns the date modified of a file as mm/dd/yy.)

2. Set humorK to the size of a file, by calling external program filesizek,
and set age to the age of the file in days.

3. Set humoru to contents of updatedflag if file is less than 9 days old.
4. Insert a line beginning with <dt>.
5. Insert a <dd> block with the file's size and date last modified.

1
2

3

4

5

HTMX example 3a
%[*include,=htmxlib.htmi]%
....
%[*callv,myfileinfo,="multics-humor"]%

<dt>
 Humor %[upflag]%</dt>
<dd>Jokes about Multics. %[fileattrib]%</dd>

1. Include file htmxlib.htmi (once) which loads a library of macros.
2. Call macro myfileinfo to get file info and set some variables.
3. Insert a line with the file size and date modified.

1

2

3

Use a macro to do the same thing, hides the details.

Result: automatic updating of the listing whenever the file changes.
Simple source code.

4

HTMX example 4
%[*include,htmxlib.htmi]%
%[*callv,getimgdiv,="sp2.gif",="p2.gif",="horse",="click for
larger view.",="pic",=""]%

Invoke a macro to generate an image tag, calling a
program to get the image size. Output:

<div class="pic">
 <img src="sp2.gif" width="300" height="317"
 alt="horse" title="click for larger view.">
</div>

Result: don’t need to put image size in your source.
If the image changes, the generated HTML will adjust when you recompile.

HTMX Expansion
• %[var]% (get the value named var)
• Inserts the contents of a variable.

• %[block]%

• Inserts the contents of a variable or block,
expanding any %[..]% references inside.

Variables
• Variables have names

• Letters, digits, spaces, ()-+_. are allowed.
• All-numeric names cause a warning.

• Variables have string values
– Any length.
– HTMX built-ins may set variable values

 %[*set,&var,="string value"]%
– Configuration file may pre-set variable values.
– Shell environment variables are searched too.
– Variables can be set to a string returned by an external

program.

HTMX Syntax
• Literal values begin with =

– %[*set,&x,="abc"]%
– Sets variable x to the value "abc", outputs nothing.
– Quotes are required if you have special characters in the value,

like commas, or %[. Use the quotes for clarity.
– Compare %[*set,&x,="it is %[xyz]%"]%

and %[*set,&y,=it is %[xyz]%]%
when variable xyz contains "Tuesday".
The first one sets x to "it is %[xyz]%" because of quotes
and the second one sets y to "it is Tuesday"

• The ampersand
– As in %[*set,&x,=abc]%
– Indicates that a value is modified by the builtin.
– If you leave it out, a warning is printed.

HTMX Syntax
• Nesting

– Expands inner variable references first.
– %[*set,&x,=abc%[r]%xyx]%
– Assuming variable r contains "99", this will set x to "abc99xyz"

• Quoting
– %[*set,&x,="]%"]%
– Sets x to a right bracket and a percent.

Quotes are interpreted only inside %[]%.
Outside of %[]% quotes are just characters.

• Escaping
– %[*set,&x,="\""]%
– Sets x to a quote character. Similarly \\, \%, etc.
– The \ character removes the special meaning of the next char.
– \ is respected everywhere. To input a \ in text, use \\ instead.

• Tracing
– %[*set,&_xf_tracebind,="yes"]%
– Causes *sqlloop, *csvloop, *xmlloop,*dirloop, and *ssvloop

to output a message when they bind a variable.

Builtin Values
(built into expandfile)

%[year]% 2004
%[prevyear]% 2003
%[day]% 07
%[month]% Oct
%[prevmonth]% Sep
%[monthx]% 10
%[hour]% 09
%[min]% 31
%[date]% 07 Oct 2004
%[timestamp]% 2004-10-07 09:31
%[pct]% %
%[lbkt]% [
%[rbkt]%]
%[quote]% "
%[_xf_currentfilename]% xyz.htmx

37 HTMX built-in functions
Begin with *. Won’t cause blank lines in the output if they are

the only thing on a line.

• %[*include,=filename]%
– insert the contents of filename, expanding variables in it.
– (use the *fread2 builtin to read files without expanding values.)

• %[*set,&varname,value]%
– set varname to "value", for later expansion.
– value can be

• =string Literal string value, e.g. ="2 cats", =Fred
• name Value of variable name, from a previous set
• envvar Value of shell environment variable envvar

– can have multiple value args, all are concatenated.
• %[** a remark]%

– Is a comment.

HTMX Blocks
• %[*block,&blockname,end-re]%

– Reads following lines until a line matching regular expression
end-re and puts the lines in variable blockname.

– For end-re, use something like ^EOB.
– Variables and builtins in the block are not expanded at

definition time, but instead when the block is expanded later.
– Specifying the same blockname more than once appends

content to the block definition.
– Must be alone on a line. Blocks do not nest.

• Use blocks to put HTMX into a variable that can be...
– expanded later, as in example 2.
– expanded many times, e.g. for database iterators.
– called as a macro with %[*callv,blockname,..]%

Conditionals
• %[*if,rel,varname,value,statement]%

– Execute statement if varname has relation rel to value
– rel may be gt lt eq ne ge le =~ !~ eqlc nelc
– statement may be a variable name or builtin invocation,

 e.g. *set, *if, and may have arguments.
– Comparisons are done as in Perl.
– The =~ and !~ operators use regular expression match.
– The eqlc and nelc operators ignore case.

• Examples:
– %[*if,=,moddate,="",*set,&moddate,date]%
– Sets moddate to the current date if it is blank.

– %[*if,eq,d,="0",*if,ne,sm,="",*fwrite,=%[m]%,sm]%
– If d is zero and sm is nonblank, write sm into file m.
– %[*if,gt,x0,=999,*subst,&w0,="^.*(...)$",=",$1"]%
– Drops all but the last 3 characters of w0 and prefixes them with a comma.

More HTMX built-ins
• %[*expand,varname]%

– Expand constructs in varname, output the result.
• %[*expandv,&var,varname]%

– Expand constructs in varname, put result in var, output
nothing.

• %[*concat,&varname,value]%
– Concatenate value onto the value in varname, output nothing.

• %[*ncopies,&varname,value,n]%
– Put n copies of value into varname, output nothing.

• %[*subst,&varname,left,right]%
– Apply Perl substitution s/left/right/ig to the contents of

varname, replacing its contents, output nothing.
• left can be a regular expression.
• left can contain parenthesized strings, used in right as $1 $2 etc.
• Backslashes in the expression need to be doubled.
• Slashes in left or right need to be prefixed by \\

HTMX Arithmetic
• %[*increment,&varname,value]%

– Increment varname's contents by contents of value, output
nothing.

• %[*decrement,&varname,value]%
– Decrement varname's contents by contents of value, output

nothing.
• %[*product,&varname,value1,value2]%

– Multiply value1 by value2 and store in varname, output
nothing.

• %[*quotient,&varname,value1,value2]%
– Divide value1 by value2 and store integer in varname,

output nothing.
• %[*quotientrounded,&varname,value1,value2]%

– Divide value1 by value2, round, store integer in varname,
output nothing.

• %[*scale,&varname,value1,value2,value3]%
– Store int(.5+(value1*value3)/value2) in varname,

output nothing.

External files
• %[*fwrite,=file,varname]%

– Write contents of varname to file, output nothing.

• %[*fappend,=file,varname]%
– Append contents of varname to file, output nothing.

• %[*fread,&varname,=file]%
– Read contents of file into varname, output nothing.
– If input is not found, sets varname to empty string.
– Does not expand values or blocks.

External Values
– %[*shell,&x,abc]%

• Executes the shell command in variable abc, sets x to
result, output nothing. If multiple lines are returned, change
newline to the value of _xf_ssvsep (default is space).

• Example:
%[*shell,&xdate,=filemodiso %[inputfile]%]%
might set xdate to "2016-07-04"

– %[*urlfetch,&varname,=url]%
• Read contents of url into varname, output nothing.
• (Think carefully about security if you do something like

this.)

External Shell Scripts
• Useful external shell commands

– supplied with expandfile, written in Perl
– Import values into expandfile
– write your own as needed, in any language

– filemodshort, filemodyear, filemodiso
– filedaysold, filesizek
– gifsize
– firstletter, uppercase, lowercase
– fmtnum
– nargs

Miscellaneous
• %[*format,&varname,fmtstring,val1,val2,...]%

– Replace $1 $2 etc. in fmtstring with corresponding values.
– Result in varname, output nothing.

• %[*htmlescape,varname]%
– Output a HTML-escaped version of varname.
– <fred> => <fred>

• %[*warn,message]%
– Write a line to STDERR.

• %[*dump]%
• Output the entire symbol table for debugging.

• %[*exit]%
– Stop expanding.

Special Files
• config.htmi

– Defines values you use in many files.
– Sequence of %[*set,&var,=value]% commands.
– Specify on command line.

• Included files and macros
– Examples: htmxlib.htmi, pagewrapper.htmi
– Standard formatting used in many pages
– Write your own, copy others
– Library htmxlib.htmi is supplied with expandfile.

HTMX error messages
• expandfile: x.htmx missing end of *block BLOCKNAME -- REXP

• expandfile: x.htmx need NUMBER]%
• expandfile: x.htmx unclosed quoted string beginning 'XXXX'

• expandfile: x.htmx missing CSV file 'FILE' ERR
• expandfile: x.htmx missing XML file 'FILE' ERR

• expandfile: x.htmx missing *include 'FILE' ERR
• expandfile: x.htmx missing *includeraw 'FILE' ERR

• expandfile: x.htmx cannot *fappend 'FILE' ERR
• expandfile: x.htmx cannot *fwrite 'FILE' ERR

• expandfile: x.htmx extra arguments X,Y,Z... to *BUILTIN
• expandfile: x.htmx invalid varname *set,&VARNAME

• expandfile: x.htmx unknown builtin *NAME,ARGS
• expandfile: x.htmx cannot open DBI:mysql:DB:HOST USER for query QUERY

• expandfile: x.htmx cannot prepare query QUERY ERRMSG
• expandfile: x.htmx cannot execute query QUERY ERRMSG

• expandfile: x.htmx cannot execute COMMANDLINE ERR

• expandfile: warning: x.htmx *set,&VARNAME varname is all digits, is = missing?

• expandfile: warning: x.htmx missing = before argument VARNAME
• expandfile: warning: x.htmx>w.htmi>imgtag 'imgtag_result' should begin with &

• expandfile: warning: expandfile: warning: unknown *if ::

Using HTMX Templates
I usually start with comments
%[** created by Tom 02/28/15 **]%

Set initial values of some variables
%[*set,&title,="Daily report"]%

Define content blocks, which may refer to variables
%[*block,&content,^END]%
...
<h1>%[title]%</h1>
...
END

At the end, include a HTMX wrapper file that expands
variables including blocks (that may expand variables).
%[*include,=pagewrapper.htmi]%

HTMX idioms
• Some useful code:

• Change a variable containing HTML so that tags at the
beginning of the line are joined to the previous line.
– %[*subst,&menu,="\\n<\\/li>",="<\\/li>"]%
– Escape slashes in subst args, since it uses / as delimiter.
– The newline is input to the subst as backslash-n.
– Input the backslash as double backslash.

• Use a value from a Makefile in a macro call
– Say you want to define a relative path prefix REL
– In your Makefile, use

 REL=../
– In the template, use

 %[*callv,img2,=%[REL]%"icon.gif"]%
– Don't put %[REL]% inside the quotes, or it won't be expanded.

SQL Loops
• Extracting data from an SQL database:

– %[*sqlloop,&rs,tpt,="SELECT * FROM table1"]%
• This statement

– Performs the database query and expands tpt for each row
after binding values to variable names in the symbol table like
table1.varname.

– Values are bound to names like table1.owner.
– Computed values such as COUNT are bound to names like

.count.
– Database parameters come from the symbol table variables

• _xf_hostname, _xf_database, _xf_username, _xf_password
• These values are often set in config.htmi

– Binds _xf_nrows to the number of rows read.
– Binds _xf_colnames to a space separated list of the column

names
– Concatenates all expansion output into result variable rs,

outputs nothing.
• A warning is printed if no rows are selected, and

execution continues.

Using *sqlloop
• Some useful functions to use in templates:

– %[*onchange,var,statement]%
– %[*onnochange,var,statement]%

• Queries can contain ORDER BY, GROUP BY, LIMIT,
SUBSTRIN_INDEX, inner and outer joins, self joins, etc.

• Handy macro to dump what was bound, for debugging:
– %[*callv,sqldump,string]%

CSV loops
• A similar loop operates on each row in a CSV (comma

separated values) file. See RFC-4180. (The file may be gzipped.)
– %[*csvloop,&resultvar,rowtpt,=filename]%
– First line (row) of the file provides the column names.
– For each of the rest of the rows, parses items, binds to column

names, expands rowtpt for the row, appends result to
resultvar, outputs nothing.

– Items in the CSV file are comma separated and may be quoted
• example: this,"is,an,example",12345
• three items:

– this
– is,an,example
– 12345

– Binds _xf_nrows to number of lines read, after loop finishes.
– Binds _xf_colnames to space separated list of col names.

%[*set,&rowno,=0]%
%[*csvloop,&outvar,iter,=examp.csv]%
%[*block,&iter,^END]%
%[*increment,&rowno,=1]%
row %[rowno]%: %[col1]% %[col2]% %[col3]% %[col4]% %[col5]%
END

What I read from file "examp.csv"
%[*includeraw,=examp.csv]%

The column names are: %[_xf_colnames]%

We read in %[_xf_nrows]% rows not counting the header

Formatted output:
%[outvar]%

CSV Loop Example
set variable

CSV loop block def

text that is copied

builtin
variable expansion

expansion of variable set by CSV loop

XML loops
• A similar loop operates on each item in an XML file.

(The file may be gzipped.)
– %[*xmlloop,&resultvar,tpt,=filename]%
– XML file has

• outermost <list> ... </list>
• containing a sequence of <item> ... </item>

– Each item contains multiple fields
• <item>
• <name>John Smith</name>
• <addr>1234 Any Street</addr>
• </item>

– For each item, binds fields to names like item.name, expands
tpt, appends result to resultvar, outputs nothing.

– Binds _xf_nxml to number of items read, after loop finishes.
– Binds _xf_xmlfields to space separated list of field names.
– Instead of <cite> use !!cite!!whatever!!/cite!!
– Instead of á use &aacute;

XML loops cont.
• An alternate form of the loop allows an XPath

– %[*xmlloop,&resultvar,tpt,=filename,xpath]%
– for cases where the XML structure is more complex.
– if xpath is not specified, the default is "/*/*"
– for each item found by the XPath arg,

• bind the values of sub-items "./*"

• bind the values of attributes of items "./@*"

– example JAMF file, access items with "*/computers/computer"
<?xml version="1.0" encoding="UTF-8"?>
<computer_group>
<name>All Managed Clients</name>
<computers>
<size>119</size>
<computer>
<name>QA2 MacBook</name>
<serial_number>54321</serial_number>
</computer>
<computer>
<name>Rocky</name>
<serial_number>12345</serial_number>
</computer>
...

File System Loops
• A similar loop iterates over a directory.
• %[*dirloop,&outvar,iter,dirpath,starrex]%
• Lists directory dirpath and expands block iter for each file

matching regular expression starrex; output is appended to
variable outvar, outputs nothing.

• e.g. %[*dirloop,&out,it2,="/home/jack/xx",="*.html"]%
• Binds variables to the values of status() info on each file:

– file_name, file_type, file_dev, file_ino, file_mode,
file_nlink, file_uid, file_gid, file_rdev, file_size,
file_atime, file_mtime, file_ctime, file_blksize,
file_blocks, file_sec, file_min, file_hour, file_mday,
file_mon, file_year, file_wday, file_yday, file_isdst,
file_datemod, file_modshort, file_sizek, file_age

• Variable file_type is set to 'f' for file, 'd' for dir, 'l' for link

SSV Loops over variables
• A similar loop iterates over a list of items in a string value.

("ssv" stands for "space separated values")

• %[*ssvloop,&outvar,iterblock,ssv]%
– Breaks ssv into tokens and expands iterblock for each,

binding _xf_ssvitem to the token (skips null tokens).
– Binds _xf_nssv to the number of tokens processed.
– Token separator is the value of _ssvsep, default is space.
– Result is stored in outvar.
– Outputs nothing. Does not modify ssv.

• %[*popssv,&var,&ssv]%
– Takes first value from ssv, puts it in var, rewrites ssv to

remove value, outputs nothing.

External Programs
• Invoke any shell program or script and capture its output.
• Example:

– %[*shell,&result,=filemodshort myfile.htmx]%
• Called from Perl, output has NL changed to space
• Useful programs (can be written in any language):

– filemodshort file => 03/27/07
– filesizek file => 33

– nargs a bb c dd e f g => 7
– gifsize pic.jpg => "pic.jpg" width="75" height="75"

– lowercase ABcdE => abcde

– nrandomlines x.htmx n (n lines from x.htmx separated by |)
– firstletter applecart => a

– filedaysold filename => 12
– fmtnum 123456 num => 123,456

– grep, sed, date, cut, awk => (Unix command output)
• Write your own as needed

Bind values from a CSV file
• Read a file in CSV format and bind variables in the memory.

– %[*bindcsv,=file]%
– The file can specify a local disk file or a URL.
– First line of the file provides the column names.
– Second line of the file provides the column values.
– Will not bind variables beginning with _ or . for security.

• For example, each server listed in an SSV could prepare a
two-line .csv file, and a simple loop over the SSV could
create an HTML table with a row for each server showing
status.

• Binds _xf_colnames to the column names set.
• A warning is printed if the file is not found.

Macro Example

%[** macro for generating an image tag **]%
%[*block,&imgtag,^END]%
%[** parameters:]%
%[** param1 - file path, same rel path must work in source and obj]%
%[** param2 - alt tag]%
%[** param3 - title tag]%
%[** output: none]%
%[** sets: imgtag_result (resulting image tag)]%
%[** -- **]%
%[*shell,&y,=gifsize %[param1]%]%
%[*if,eq,y,="",*concat,&y,param1]%
%[*set,&imgtag_result,="<img src="]%
%[*concat,&imgtag_result,y]%
%[*concat,&imgtag_result,=" alt=\""]%
%[*concat,&imgtag_result,param2]%
%[*concat,&imgtag_result,="\" title=\""]%
%[*concat,&imgtag_result,param3]%
%[*concat,&imgtag_result,="\">"]%
END

Call: %[*callv,imgtag,="abc.jpg",="AAA",="Bbb"]%
Generates:
Use: generates IMG tag and fills in size in pixels, ALT and TITLE

external shell call to "gifsize"
(a program in my library)

define block "imgtag"

Multics Formatting
• Enabled if the _xf_expand_multics variable is set to

"all" or "nosql".
• Optional formatting constructs for

– pathname: {=text=}
• expands to text

– command: {:text:}
• expands to text

– code: {+text+}
• expands to text

Multics Links
• Optional link constructs (with "all") for

– External link reference {!tag anchor text!}
• See loadext.sql for external tags

– Internal link reference {@file anchor text@}
• See loadpages.sql for internal files

– Link to Glossary {{tag anchor text}}
• See g1.sql for glossary tags

– Link to multicians.html {[nametag Name]}
• See loadm.sql for Multicians tags

• Each construct expands to a hyperlink with an HTML title
attribute from the database. (Database parameters from the
symbol table.)

Example from Multics
Website

• Example story file: manning.htmx
– Sets some variables, e.g. title
– Defines two blocks, body and extratail
– Inserts pagewrapper.htmi

• Source features
– Paragraphs have <p> and </p> (see HTML Tidy)
– Uses Corbató and & in text

• Multics features activated by _xf_expand_multics switch
– Author para has {[Manning Eric Manning]} and has

semantic tag class="author"
– Special link {@-manning.html Next Story@}

expandfile

• what: Perl program in your ~/bin
• how to invoke at command level:

expandfile conf.htmi x.htmt > x.html

• what it does: expands a template
• who calls it: Makefile, shell scripts
• how it works

– get args, read config file conf.htmi
– read template file x.htmt
– scan for blocks, register them, remove from template
– &expandstring() the rest
– write the result on stdout, piped into x.html

Other uses for expandfile
• expandfile doesn't know or care about the format of its

input and output: it does not know about HTML.
• Can use it to create any kind of text file. Examples:

– input to GraphViz and rrdtool
– procmail control file
– mysql input
– XML data: Google site map, RSS feed
– shell scripts

• Super Webtrax (SWT)
– Web site traffic analysis report
– Loads web server log into SQL, expands templates that

query the database and writes HTML reports

&expandstring()

• what: Perl function provided in expandfile.pm
• how to invoke it:

$result = &expandstring($tpt, \%symtb);
• what it does: returns expansion of template
• who calls it:

– expandfile, special expanders, various CGIs
• how it works:

– Parses and interprets HTMX language
– Uses and sets symbol table
– Returns string as output

• can run auxiliary function for block expansion first:
$xtpt = &expandblocks($tpt, \%symtb);

Using &expandstring()
• Perl skeleton

use expandfile.pm;

my %symtb;
set up $symtb{xxx} with contents, computed somehow

read in a template into $tptstr

$result = &expandstring($tptstr, \%symtb);
print "$result\n";

• The Perl program has no output formatting built into it.
• The template does all formatting; could use HTML, CSV, or

some other language. (Same data could be formatted in
more than one language.)

• The coupling between the Perl program and the template is
the list of hash keys / variable names in %symtb.

Uses for &expandstring()
• Online CGI programs in Perl call &expandstring() to

– Generate dynamic web pages
• mail form
• registration
• statistics
• RSS feed formatting
• management
• result and error pages

– Format mail messages
• mail sending

• Offline Perl programs call &expandstring() to expand
templates.

HTMX / PHP similarities
• Both extend HTML
• Both have variables and functions
• Variable values are strings in each
• Both have user-defined functions and libraries
• Both can include files
• Both have MySQL integration

HTMX / PHP differences
HTMX
• Static compilation
• Parse once
• Errors found at compile
• 37 builtin functions
• Web server agnostic

• Blocks
• Wrapper templates
• Loops on SQL, CSV, XML,

File System, and SSV

PHP
• Runtime interpreter
• Parse on every view
• Errors found at runtime
• >5000 builtin functions
• Web server integrated
• Arg sanitization risk
• Integrated with FORM
• 123 == "123foo"

but "123foo" != 123
• SQL integration

Design Choices for HTMX

• Static pages
• Uses existing facilities

– Can be used to extend HTML
– Doesn't know HTML syntax
– Uses the file system
– Uses UNIX tools
– extend language via shell commands

Availability

• Documentation
– https://multicians.org/thvv/htmx/expandfile.html

• Open Source
– https://github.com/thvv/expandfile

