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HTMX Benefits
• Simplify features of HTML.
• Avoid errors.
• Edit one file instead of many:
– Standard headers, footers, values.
– One file can depend on another’s content.
– One file can depend on another’s attributes.

• Fill in values automatically.
• Can still use any HTML feature.

• Pages are statically generated offline.
• No security holes introduced.



HTMX Example 1
<!DOCTYPE html>
<html lang="en">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
    <title>%[titlestring]%</title>
%[*include,=mxstdfmt.htmi]%
%[*include,=linktags.htmi]%
%[*include,=h1style.htmi]%
</head>
  <body>
    <div class="outer">
%[*set,&headingtitle,="Phase One"]%
%[*set,&headingdate,="25 Jul 1995"]%
%[*include,=class2head.htmi]%
      <br>
. . .

•Contents of %[ … ]% are expanded. The rest is copied.
•Expansions beginning with * perform built-in functions: 
•Assign  %[*set,&var,value]%
•Include file %[*include,=filename]%



HTMX Example 2
%[*set,&title,="My Fish Story"]%
%[*block,&content,^END]%
  <p>This is a story called %[title]%.
  It will get standard head and foot.
  </p>
END
%[*include,=story-template.htmi]%

Sets variable title to the string “My Fish Story” 
Sets variable content to the block of 3 lines before END.
Reads and expands macro file story-template.htmi
which expands the values of variables  title and content 
and wraps the content with a standard heading and footer. 
Design templates once and use them in many pages.



HTMX Builtins Can…
• Assign and modify variables.
• Include other HTMX files, which may contain 

variable references or macros.
• Execute programs and use their output.
• Perform conditional tests.
• Write data to files for later inclusion.
• Use values from configuration files and 

environment variables.
• Use information from database or file system.



HTMX example 3
%[*shell,&humordate,=filemodshort multics-humor.htmx]%
%[*shell,&humorK,=filesizek ../multics/multics-humor.html]%
%[*set,&age,=fileagedays ../multics/multics-humor.html]%
%[*set,&humoru,=""]%
%[*if,>,9,age,*set,&humoru,updatedflag]%

<dt><a href="multics-humor.html"><span class="topic">Humor</span></a>
  %[humoru]%</dt>
<dd>Jokes about Multics. 
   <span class="adata">(%[humorK]%K, 1 picture, %[humordate]%)</span>
</dd>

1. Set variable humordate to the date a file was modified. (External program 
filemodshort returns the date modified of a file as mm/dd/yy.)

2. Set humorK to the size of a file, by calling external program filesizek, 
and set age to the age of the file in days.

3. Set humoru to contents of updatedflag if file is less than 9 days old.
4. Insert a line beginning with <dt>. 
5. Insert a <dd> block with the file's size and date last modified.
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HTMX example 3a
%[*include,=htmxlib.htmi]%
....
%[*callv,myfileinfo,="multics-humor"]%

<dt><a href="multics-humor.html">
    <span class="topic">Humor</span></a> %[upflag]%</dt>
<dd>Jokes about Multics. %[fileattrib]%</dd>

1. Include file htmxlib.htmi (once) which loads a library of macros.
2. Call macro myfileinfo to get file info and set some variables.
3. Insert a line with the file size and date modified.

1

2

3

Use a macro to do the same thing, hides the details.

Result: automatic updating of the listing whenever the file changes.  
Simple source code.

4



HTMX example 4
%[*include,htmxlib.htmi]%
%[*callv,getimgdiv,="sp2.gif",="p2.gif",="horse",="click for 
larger view.",="pic",=""]%

Invoke a macro to generate an image tag, calling a
program to get the image size.  Output:

<div class="pic">
  <a href="p2.gif"><img src="sp2.gif" width="300" height="317" 
   alt="horse" title="click for larger view."></a>
</div>

Result: don’t need to put image size in your source.
If the image changes, the generated HTML will adjust when you recompile.



HTMX Expansion
•  %[var]% (get the value named var)
• Inserts the contents of a variable.

• %[block]%

• Inserts the contents of a variable or block, 
expanding any %[..]% references inside. 



Variables
• Variables have names

• Letters, digits, spaces, ()-+_. are allowed.
• All-numeric names cause a warning.

• Variables have string values
– Any length.
– HTMX built-ins may set variable values 

  %[*set,&var,="string value"]% 
– Configuration file may pre-set variable values.
– Shell environment variables are searched too.
– Variables can be set to a string returned by an external 

program.



HTMX Syntax
• Literal values begin with =

–  %[*set,&x,="abc"]% 
– Sets variable x to the value "abc", outputs nothing.
– Quotes are required if you have special characters in the value, 

like commas, or %[.  Use the quotes for clarity.
– Compare %[*set,&x,="it is %[xyz]%"]%

and %[*set,&y,=it is %[xyz]%]%
when variable xyz contains "Tuesday".
The first one sets x to "it is %[xyz]%" because of quotes
and the second one  sets y to "it is Tuesday"

• The ampersand
– As in %[*set,&x,=abc]% 
– Indicates that a value is modified by the builtin.
– If you leave it out, a warning is printed.



HTMX Syntax
• Nesting

– Expands inner variable references first.
–  %[*set,&x,=abc%[r]%xyx]% 
– Assuming variable  r contains "99", this will set x to "abc99xyz"

• Quoting
–  %[*set,&x,="]%"]% 
– Sets x to a right bracket and a percent. 

Quotes are interpreted only inside %[ ]%. 
Outside of %[ ]% quotes are just characters.

• Escaping
–  %[*set,&x,="\""]% 
– Sets x to a quote character. Similarly \\, \%, etc.
– The \ character removes the special meaning of the next char.
–  \ is respected everywhere.  To input a \ in text, use \\ instead.

• Tracing
–  %[*set,&_xf_tracebind,="yes"]%
– Causes *sqlloop, *csvloop, *xmlloop,*dirloop, and *ssvloop 

to output a message when they bind a variable.



Builtin Values
(built into expandfile)

%[year]%    2004
%[prevyear]%    2003
%[day]%     07
%[month]%    Oct
%[prevmonth]%    Sep
%[monthx]%    10
%[hour]%    09
%[min]%    31
%[date]%    07 Oct 2004
%[timestamp]%    2004-10-07 09:31
%[pct]%        %
%[lbkt]%        [
%[rbkt]%        ]
%[quote]%        "
%[_xf_currentfilename]% xyz.htmx



37 HTMX built-in functions
Begin with *. Won’t cause blank lines in the output if they are 

the only thing on a line.

•  %[*include,=filename]% 
– insert the contents of filename, expanding variables in it.
– (use the *fread2 builtin to read files without expanding values.)

•  %[*set,&varname,value]% 
– set varname to "value", for later expansion.
–   value can be 

• =string Literal string value, e.g. ="2 cats", =Fred
• name  Value of variable name, from a previous set
• envvar Value of shell environment variable envvar

– can have multiple value args, all are concatenated. 
• %[** a remark]% 

– Is a comment.



HTMX Blocks
•  %[*block,&blockname,end-re]% 

– Reads following lines until a line matching regular expression 
end-re and puts the lines in variable blockname.

– For end-re, use something like ^EOB.
– Variables and builtins in the block are not expanded at 

definition time, but instead when the block is expanded later.
– Specifying the same blockname more than once appends 

content to the block definition.
– Must be alone on a line. Blocks do not nest.

• Use blocks to put HTMX into a variable that can be...
– expanded later, as in example 2.
– expanded many times, e.g. for database iterators.
– called as a macro with %[*callv,blockname,..]%



Conditionals
•  %[*if,rel,varname,value,statement]% 

– Execute statement if  varname has relation rel to value
–  rel may be gt lt eq ne ge le =~ !~ eqlc nelc
–  statement may be a variable name or builtin invocation,

 e.g. *set, *if, and may have arguments.
– Comparisons are done as in Perl.
– The =~ and !~ operators use regular expression match.
– The eqlc and nelc operators ignore case.

• Examples:
–  %[*if,=,moddate,="",*set,&moddate,date]%
– Sets moddate to the current date if it is blank.

–  %[*if,eq,d,="0",*if,ne,sm,="",*fwrite,=%[m]%,sm]%
– If d is zero and sm is nonblank, write sm into file m.
–  %[*if,gt,x0,=999,*subst,&w0,="^.*(...)$",=",$1"]%
– Drops all but the last 3 characters of w0 and prefixes them with a comma. 



More HTMX built-ins
•  %[*expand,varname]% 

– Expand constructs in varname, output the result.
•  %[*expandv,&var,varname]% 

– Expand constructs in varname, put result in var, output 
nothing.

•  %[*concat,&varname,value]% 
– Concatenate value onto the value in varname, output nothing.

•  %[*ncopies,&varname,value,n]% 
– Put n copies of value into varname, output nothing.

•  %[*subst,&varname,left,right]% 
– Apply Perl substitution s/left/right/ig to the contents of 

varname, replacing its contents, output nothing. 
• left can be a regular expression. 
• left can contain parenthesized strings, used in right as $1 $2 etc.
• Backslashes in the expression need to be doubled.
• Slashes in left or right need to be prefixed by \\ 



HTMX Arithmetic
•  %[*increment,&varname,value]% 

– Increment varname's contents by contents of value, output 
nothing.

•  %[*decrement,&varname,value]% 
– Decrement varname's contents by contents of value, output 

nothing.
•  %[*product,&varname,value1,value2]% 

– Multiply value1 by value2 and store in varname, output 
nothing. 

•  %[*quotient,&varname,value1,value2]% 
– Divide value1 by value2 and store integer in varname, 

output nothing.
•  %[*quotientrounded,&varname,value1,value2]% 

– Divide value1 by value2, round, store integer in varname, 
output nothing.

•  %[*scale,&varname,value1,value2,value3]% 
– Store int(.5+(value1*value3)/value2) in varname, 

output nothing.



External files
•  %[*fwrite,=file,varname]% 

– Write contents of varname to file, output nothing.

•  %[*fappend,=file,varname]% 
– Append contents of varname to file, output nothing.

•  %[*fread,&varname,=file]% 
– Read contents of file into varname, output nothing.
– If input is not found, sets varname to empty string.
– Does not expand values or blocks.



External Values
–  %[*shell,&x,abc]%

• Executes the shell command in variable abc, sets x to 
result, output nothing. If multiple lines are returned, change 
newline to the value of _xf_ssvsep (default is space).

• Example:
%[*shell,&xdate,=filemodiso %[inputfile]%]%
might set xdate to "2016-07-04"

–  %[*urlfetch,&varname,=url]% 
• Read contents of url into varname, output nothing.
• (Think carefully about security if you do something like 

this.)



External Shell Scripts
• Useful external shell commands

– supplied with expandfile, written in Perl
– Import values into expandfile
– write your own as needed, in any language

–  filemodshort, filemodyear, filemodiso
–  filedaysold, filesizek
–  gifsize
–  firstletter, uppercase, lowercase
–  fmtnum
–  nargs



Miscellaneous
•  %[*format,&varname,fmtstring,val1,val2,...]% 

– Replace $1 $2 etc. in fmtstring with corresponding values.
– Result in varname, output nothing.

•  %[*htmlescape,varname]% 
– Output a HTML-escaped version of varname.
– <fred> => &lt;fred&gt;

•  %[*warn,message]% 
– Write a line to STDERR.

•  %[*dump]% 
• Output the entire symbol table for debugging. 

• %[*exit]% 
– Stop expanding.



Special Files
•  config.htmi

– Defines values you use in many files.
– Sequence of  %[*set,&var,=value]% commands.
– Specify on command line.

• Included files and macros
– Examples: htmxlib.htmi, pagewrapper.htmi
– Standard formatting used in many pages
– Write your own, copy others
– Library htmxlib.htmi is supplied with expandfile.



HTMX error messages
• expandfile: x.htmx missing end of *block BLOCKNAME -- REXP

• expandfile: x.htmx need NUMBER ]%
• expandfile: x.htmx unclosed quoted string beginning 'XXXX'

• expandfile: x.htmx missing CSV file 'FILE' ERR
• expandfile: x.htmx missing XML file 'FILE' ERR

• expandfile: x.htmx missing *include 'FILE' ERR
• expandfile: x.htmx missing *includeraw 'FILE' ERR

• expandfile: x.htmx cannot *fappend 'FILE' ERR
• expandfile: x.htmx cannot *fwrite 'FILE' ERR

• expandfile: x.htmx extra arguments X,Y,Z... to *BUILTIN
• expandfile: x.htmx invalid varname *set,&VARNAME

• expandfile: x.htmx unknown builtin *NAME,ARGS
• expandfile: x.htmx cannot open DBI:mysql:DB:HOST USER for query QUERY

• expandfile: x.htmx cannot prepare query QUERY ERRMSG
• expandfile: x.htmx cannot execute query QUERY ERRMSG

• expandfile: x.htmx cannot execute COMMANDLINE ERR

• expandfile: warning: x.htmx *set,&VARNAME varname is all digits, is = missing?

• expandfile: warning: x.htmx missing = before argument VARNAME
• expandfile: warning: x.htmx>w.htmi>imgtag 'imgtag_result' should begin with &

• expandfile: warning: expandfile: warning: unknown *if ::



Using HTMX Templates
I usually start with comments
%[** created by Tom 02/28/15 **]%

Set initial values of some variables
%[*set,&title,="Daily report"]%

Define content blocks, which may refer to variables
%[*block,&content,^END]%
...
<h1>%[title]%</h1>
...
END

At the end, include a HTMX wrapper file that expands
variables including blocks (that may expand variables).
%[*include,=pagewrapper.htmi]%



HTMX idioms
• Some useful code:

• Change a variable containing HTML so that </li> tags at the 
beginning of the line are joined to the previous line.
–  %[*subst,&menu,="\\n<\\/li>",="<\\/li>"]% 
– Escape slashes in subst args, since it uses / as delimiter.
– The newline is input to the subst as backslash-n.
– Input the backslash as double backslash.

• Use a value from a Makefile in a macro call
– Say you want to define a relative path prefix REL
– In your Makefile, use

 REL=../
– In the template, use

 %[*callv,img2,=%[REL]%"icon.gif"]%
– Don't put %[REL]% inside the quotes, or it won't be expanded.



SQL Loops
• Extracting data from an SQL database:

–  %[*sqlloop,&rs,tpt,="SELECT * FROM table1"]%
• This statement

– Performs the database query and expands tpt for each row 
after binding values to variable names in the symbol table like  
table1.varname. 

– Values are bound to names like table1.owner.
– Computed values such as COUNT are bound to names like 

.count.
– Database parameters come from the symbol table variables

•  _xf_hostname, _xf_database, _xf_username, _xf_password
• These values are often set in config.htmi

– Binds _xf_nrows to the number of rows read.
– Binds _xf_colnames to a space separated list of the column 

names
– Concatenates all expansion output into result variable rs, 

outputs nothing.
• A warning is printed if no rows are selected, and 

execution continues.



Using *sqlloop
• Some useful functions to use in templates:

–  %[*onchange,var,statement]%
–  %[*onnochange,var,statement]%

• Queries can contain ORDER BY, GROUP BY, LIMIT, 
SUBSTRIN_INDEX, inner and outer joins, self joins, etc.

• Handy macro to dump what was bound, for debugging:
–  %[*callv,sqldump,string]%



CSV loops
• A similar loop operates on each row in a CSV (comma 

separated values) file. See RFC-4180. (The file may be gzipped.)
–  %[*csvloop,&resultvar,rowtpt,=filename]% 
– First line (row) of the file provides the column names.
– For each of the rest of the rows, parses items, binds to column 

names, expands rowtpt for the row, appends result to 
resultvar, outputs nothing.

– Items in the CSV file are comma separated and may be quoted
• example:  this,"is,an,example",12345
• three items: 

– this
– is,an,example
– 12345

– Binds _xf_nrows to number of lines read, after loop finishes.
– Binds _xf_colnames to space separated list of col names.



%[*set,&rowno,=0]%
%[*csvloop,&outvar,iter,=examp.csv]%
%[*block,&iter,^END]%
%[*increment,&rowno,=1]%
row %[rowno]%:   %[col1]%   %[col2]%    %[col3]%   %[col4]%   %[col5]%
END

What I read from file "examp.csv"
%[*includeraw,=examp.csv]%

The column names are: %[_xf_colnames]%

We read in %[_xf_nrows]% rows not counting the header

Formatted output:
%[outvar]%

CSV Loop Example
set variable

CSV loop block def

text that is copied

builtin
variable expansion

expansion of variable set by CSV loop



XML loops
• A similar loop operates on each item in an XML file. 

(The file may be gzipped.)
–  %[*xmlloop,&resultvar,tpt,=filename]% 
– XML file has 

• outermost <list> ... </list>
• containing a sequence of <item> ... </item> 

– Each item contains multiple fields
• <item>
•    <name>John Smith</name>
•    <addr>1234 Any Street</addr>
• </item>

– For each item, binds fields to names like item.name, expands 
tpt, appends result to resultvar, outputs nothing.

– Binds _xf_nxml to number of items read, after loop finishes.
– Binds _xf_xmlfields to space separated list of field names.
– Instead of <cite> use !!cite!!whatever!!/cite!!
– Instead of &aacute; use &amp;aacute;



XML loops cont.
• An alternate form of the loop allows an XPath

–  %[*xmlloop,&resultvar,tpt,=filename,xpath]%
– for cases where the XML structure is more complex.
– if xpath is not specified, the default is "/*/*"
– for each item found by the XPath arg,

• bind the values of sub-items "./*"

• bind the values of attributes of items  "./@*"

– example JAMF file, access items with "*/computers/computer"
<?xml version="1.0" encoding="UTF-8"?>
<computer_group>
<name>All Managed Clients</name>
<computers>
<size>119</size>
<computer>
<name>QA2 MacBook</name>
<serial_number>54321</serial_number>
</computer>
<computer>
<name>Rocky</name>
<serial_number>12345</serial_number>
</computer>
...



File System Loops
• A similar loop iterates over a directory.
•  %[*dirloop,&outvar,iter,dirpath,starrex]% 
• Lists directory dirpath and expands block iter for each file 

matching regular expression starrex; output is appended to 
variable outvar, outputs nothing.

• e.g. %[*dirloop,&out,it2,="/home/jack/xx",="*.html"]%
• Binds variables to the values of status() info on each file:

– file_name, file_type, file_dev, file_ino, file_mode, 
file_nlink, file_uid, file_gid, file_rdev, file_size, 
file_atime, file_mtime, file_ctime, file_blksize, 
file_blocks, file_sec, file_min, file_hour, file_mday, 
file_mon, file_year, file_wday, file_yday, file_isdst, 
file_datemod, file_modshort, file_sizek, file_age

• Variable file_type is set to 'f' for file, 'd' for dir, 'l' for link



SSV Loops over variables
• A similar loop iterates over a list of items in a string value. 

("ssv" stands for "space separated values")

•  %[*ssvloop,&outvar,iterblock,ssv]% 
– Breaks ssv into tokens and expands iterblock for each, 

binding _xf_ssvitem to the token (skips null tokens).
– Binds _xf_nssv to the number of tokens processed.
– Token separator is the value of _ssvsep, default is space.
– Result is stored in outvar.
– Outputs nothing. Does not modify ssv.

•  %[*popssv,&var,&ssv]%
– Takes first value from ssv, puts it in var, rewrites ssv to 

remove value, outputs nothing.



External Programs
• Invoke any shell program or script and capture its output.
• Example:

–  %[*shell,&result,=filemodshort myfile.htmx]%
• Called from Perl, output has NL changed to space
• Useful programs (can be written in any language):

– filemodshort file => 03/27/07
– filesizek file => 33

– nargs a bb c dd e f g => 7
– gifsize pic.jpg => "pic.jpg" width="75" height="75"

– lowercase ABcdE => abcde

– nrandomlines x.htmx n (n lines from x.htmx separated by |)
– firstletter applecart => a

– filedaysold filename => 12
– fmtnum 123456 num => 123,456

– grep, sed, date, cut, awk => (Unix command output)
• Write your own as needed



Bind values from a CSV file
• Read a file in CSV format and bind variables in the memory.

–  %[*bindcsv,=file]% 
– The file can specify a local disk file or a URL.
– First line of the file provides the column names.
– Second line of the file provides the column values. 
– Will not bind variables beginning with _ or . for security.

• For example, each server listed in an SSV could prepare a 
two-line .csv file, and a simple loop over the SSV could 
create an HTML table with a row for each server showing 
status.

• Binds _xf_colnames to the column names set.
• A warning is printed if the file is not found.



Macro Example

%[** macro for generating an image tag **]%
%[*block,&imgtag,^END]%
%[** parameters: ]%
%[**   param1 - file path, same rel path must work in source and obj]%
%[**   param2 - alt tag]%
%[**   param3 - title tag]%
%[** output: none]%
%[** sets: imgtag_result (resulting image tag)]%
%[** ------------------------------------------------------------ **]%
%[*shell,&y,=gifsize %[param1]%]%
%[*if,eq,y,="",*concat,&y,param1]%
%[*set,&imgtag_result,="<img src="]%
%[*concat,&imgtag_result,y]%
%[*concat,&imgtag_result,=" alt=\""]%
%[*concat,&imgtag_result,param2]%
%[*concat,&imgtag_result,="\" title=\""]%
%[*concat,&imgtag_result,param3]%
%[*concat,&imgtag_result,="\">"]%
END

Call: %[*callv,imgtag,="abc.jpg",="AAA",="Bbb"]%
Generates:  <img src="abc.jpg" width="75" height="75" border="0" alt="AAA" title="Bbb">
Use:             generates IMG tag and fills in size in pixels, ALT and TITLE

external shell call to "gifsize"
(a program in my library)

define block "imgtag"



Multics Formatting
• Enabled if the _xf_expand_multics variable is set to 

"all" or "nosql".
• Optional formatting constructs for

– pathname: {=text=}
• expands to <span class=“pathname”>text</span>

– command: {:text:}
• expands to <span class=“cmd”>text</span>

– code: {+text+}
• expands to <span class=“code”>text</span>



Multics Links
• Optional link constructs (with "all") for

– External link reference {!tag anchor text!}
• See loadext.sql for external tags

– Internal link reference {@file anchor text@}
• See loadpages.sql for internal files

– Link to Glossary {{tag anchor text}}
• See g1.sql for glossary tags

– Link to multicians.html {[nametag Name]}
• See loadm.sql for Multicians tags

• Each construct expands to a hyperlink with an HTML title 
attribute from the database. (Database parameters from the 
symbol table.)



Example from Multics 
Website

• Example story file: manning.htmx
– Sets some variables, e.g. title
– Defines two blocks, body and extratail
– Inserts pagewrapper.htmi

• Source features
– Paragraphs have <p> and </p> (see HTML Tidy)
– Uses Corbat&oacute; and &amp; in text

• Multics features activated by _xf_expand_multics switch
– Author para has {[Manning Eric Manning]} and has 

semantic tag class="author"
– Special link {@-manning.html Next Story@}



expandfile

• what: Perl program in your ~/bin
• how to invoke at command level: 

expandfile conf.htmi x.htmt > x.html

• what it does: expands a template
• who calls it: Makefile, shell scripts
• how it works

– get args, read config file conf.htmi
– read template file x.htmt
– scan for blocks, register them, remove from template
–  &expandstring() the rest
– write the result on stdout, piped into x.html



Other uses for expandfile
•  expandfile doesn't know or care about the format of its 

input and output: it does not know about HTML.
• Can use it to create any kind of text file. Examples:

– input to GraphViz and rrdtool
–  procmail control file
–  mysql input
– XML data: Google site map, RSS feed
– shell scripts

• Super Webtrax (SWT)
– Web site traffic analysis report
– Loads web server log into SQL, expands templates that 

query the database and writes HTML reports



&expandstring()

• what: Perl function provided in expandfile.pm
• how to invoke it:

$result = &expandstring($tpt, \%symtb);
• what it does: returns expansion of template
• who calls it: 

– expandfile, special expanders, various CGIs
• how it works:

– Parses and interprets HTMX language
– Uses and sets symbol table
– Returns string as output

• can run auxiliary function for block expansion first:
$xtpt = &expandblocks($tpt, \%symtb);



Using &expandstring()
• Perl skeleton

use expandfile.pm; 

my %symtb;
# set up $symtb{xxx} with contents, computed somehow

# read in a template into $tptstr

$result = &expandstring($tptstr, \%symtb);
print "$result\n";

• The Perl program has no output formatting built into it.
• The template does all formatting; could use HTML, CSV, or 

some other language. (Same data could be formatted in 
more than one language.)

• The coupling between the Perl program and the template is 
the list of hash keys / variable names in %symtb.



Uses for &expandstring()
• Online CGI programs in Perl call &expandstring() to 

– Generate dynamic web pages
• mail form
• registration
• statistics
• RSS feed formatting
• management
• result and error pages

– Format mail messages
• mail sending

• Offline Perl programs call &expandstring() to expand 
templates.



HTMX / PHP similarities
• Both extend HTML
• Both have variables and functions
• Variable values are strings in each
• Both have user-defined functions and libraries
• Both can include files
• Both have MySQL integration



HTMX / PHP differences
HTMX
• Static compilation
• Parse once
• Errors found at compile
• 37 builtin functions
• Web server agnostic

• Blocks
• Wrapper templates
• Loops on SQL, CSV, XML, 

File System, and SSV

PHP
• Runtime interpreter
• Parse on every view
• Errors found at runtime
• >5000 builtin functions
• Web server integrated
• Arg sanitization risk
• Integrated with FORM
• 123 == "123foo" 

but "123foo" != 123
• SQL integration



Design Choices for HTMX

• Static pages
• Uses existing facilities

–  Can be used to extend HTML
–  Doesn't know HTML syntax
–  Uses the file system
–  Uses UNIX tools
–  extend language via shell commands



Availability

• Documentation
– https://multicians.org/thvv/htmx/expandfile.html

• Open Source
– https://github.com/thvv/expandfile


