
MULTICS TECHNICAL BULLETIN HT8-tCJ3 

Toi HTB Distribution 

Froml R. ~ulten, T. Casey 

Date• 19 Mav 1975 

Sub)ecta Priority Scheduler 

INTRODUCTION 

This document describes the functions and proposed lmple•entatlon 
of a scheduler for Hultlcs which wltl allow more flexible 
admlnlstratlve control of the allocatlon of the cpu tlme resource 
to system users and groups of users. 

It ls not an obJectlve of this proposal to atteapt to achieve 
greater throughput ln any numerical sense. However, lt ls an 
explicit obJective that throughput of Jobs deemed most valuable 
by a system administrator will be increased. To that extent, the 
value of Hultics as a co•puter utility ls enhanced. Of course, 
every effort wll I be made to ensure the eff lclency of the design 
and ieplementation of the priority scheduler. 

THE PROSLEH 

,... Currently, the Answering Service provides a mechanis• (load 
control• for classifylng users into groups, and glvlng each group 
a specified sha~e of the system (by llmitlng the number of users 
from each group that may be logged in concurrently). 

However, except for the setting of the per-process parameter, 
timax, no control over the rate of consumption of cpu resources 
by any user or group of users ls provided. CBrief ly stated, 
there is a parameter, ti, associated Mith each process, Mhlch ls 
roughly proportional to the amount of cpu time used by the 
process since lt last interacted. If the value of tl for a 
process ever exceeds tlmax, lt ls set to tlmax. The process Mlth 
the lowest value of tl ls at"ays selected for ef lglbillty.) In 
practice, the considerable advantage given to a process by a 
lower-than-normal value of tlmax has prevented alt processes but 
the Initializer (and sometimes Backup, fro• being given timax•s 
lower than the default value. 

THE SOLUTION 

Th ls HTB proposes that the scheduler allow the grouoing of 
into work classes, and provide each work class with a 

percentage of available cpu time. Conceptually, each 
will be assigned a virtual processor of 

processes 
guaranteed 
work class 

Multics ProJect internal working documentation. Not to be 
reproduced or distributed outside the Multics ProJect. 



Page z MTB-193 

admlnlstratlvely defined computational po"er, available to 
•embers of the appropriate "ork class on demand. Any cpu tlme 
not needed oy a ~ork class "111 be made available to other ~ork 
c I asses, and cannot be reel almed .at a I ater t lme. In th l's 
respect each vlrtual processor ls llke a real processor• time 
unused is tl•e 1~s~ forever. 

In its ldeall~ed form, the scheduler proposed here provides each 
"ork class •ltti a speclfled co•putational po"er on an 
Instantaneous b.a·sls. The Ideal lzed scheduf.er has a t lme c·onstant 
Cor lntegrat ing ·t 111ea approachlng zero seconds. The servlce and 
function provJ.di!d by the ldeallzed scheduler are known constants, 
not subJect to b.elng bent out of shape by prevlo.u·s transients in 
per-"orkclass loads. 

The actual scheduler "lit for reasons of system efficiency, 
scheduler effJclencv and response, necessarily have a time 
constant on the order of several seconds. As an example, 
consider the time constant reQuired to smoothly provide service 
to a work c1ass whlch has been assigned 20 percent of a single 
cpu conflguratlon and whose me•bers are generally provided with 
an eligibility Quantum of 2 seconds. If the scheduler functions 
correctly, so•e ~rocess J.n the work class •ill be given a two 
virtual second quantu• every 10 virtual seconds, or approximately 
every 20 re.al seconds. This implies that in s·ome way the 
scheduler must be integrat.lng over the past 20 real s·econds for 
such a •ork ~lass. Averaging over a considerably shorter period 
would r•Qulr~ sl9nlf.lcantly shorter quanta and result in 
increased scheduler and paging overhead. Averaging over longer 
periods of time moves away from the idealized scheduler and 
to~ard a scheduler whose behavior ls more dep~ndent than 

' necessary on the past history of the system. 

The ability to llmlt the 
ls clearly desirable, 
abi I ltv to asslgn each 
obviously needed. 

number of processes ln each work class 
lf not an absolute necessity, and the 

process to a specific "ork class ls 

To have two separate and independently-functioning mechan.lsms for 
classifying users into groups and limiting the number from each 
group that may t>e logged in concurrently ls at best unnecessary, 
and at worst, confusing and full of hidden problems. 

Therefore, there must be a close relationship between work 
classes and load control groups, and a single algorithm must be 
used to determine a process•s membership ln both classlflcatlons. 
For example, there could either be a one-to-one correspondence 
between work classes and load control groups, or else the work 
class of a process could be a function of its load control group, 
with possibly more than one load control group belonging to one 
work class. We have chosen the latter, more general, 
alternative. 



HTB-193 Page 3 

It "ill be posslble for the system administrator to speclfy the 
number of work classes (a limit of 16 will be imposed by the 
scheduler>, and the guaranteed percentage of each work class. 

The admlnlstrator will be able to define the membership of each 
work class. It wll I be possible to define such work classes ast 
al I IO dae•ons, the Backup daemon, al I users on a certain 
proJect, or one individual user. In each of those groupings, it 
wlll be possible to assign absentee and interactive processes 
elther to the same or to different work classes. 

The set of work class parameters, and the membershlp of each will 
be able to be changed auto•atically (at each shift change> and 
manuallv (by the svstem administrator, who may lnstalt a new 
table at anv ti•e). Thus, the work ctasses of existing processes 
can change. 

HARDCORE SCHEDULER 

The new scheduler will maintain an ellgibte queue consisting of 
eligible processes only and will manage 16 ready queues, one for 
each work class. Each ready queue wlll be managed Just as the 
non-ellgible portion of the current ready queue ls managed 
that ls the queues will each be internally sorted by ti values 
and favor the most interactive users within the work class. The 
current method of malntalnlng a ready Queue ls chosen for the new 
scheduler for three reasons• 

1. It ls response oriented, and ln fact has been proven to 
provide the mlnl•um mean respose time. 

2· If such a Queue consists of processes all wlth tl = tlmax, 
the the Queue ls largely run as a pushdown stack. This 
leads to very desirable paging behavior ln that the most 
recently run process (the process most likely to have its 
worklng set still ln core or on the paging device) will 
of ten be the next process to be run. 

3. Use of alreadv exlstlng code 
i•plementatlon effort required. 

simplify the 

To contain Information pertaining to each work class, tc_data 
will contain 1& work_class_table_entrles <WCTE•s>. Each WCTE 
will contain a thread-word for accessing the members of the work 
class which are ready, and all parameters and metering data 
relating to the work class. This will include the total amount 
of virtual cpu time used by the work class, the total number of 
times ellglbllity was granted to a member, the fraction of 
virtual cpu time which the work class ls to receive, and the 
response time seen by lts members. 



Page 4 HTB-193 

The actual algorlth• used to enforce the proper sharing of the 
cpu resource wlll be as follows. Imagine the exlstance of a 
syste• virtual clock which increments as virtual time ls used by 
non-ldle processes. Imaglne also that each work class has a 
store of credlts (ln unlts of microseconds) which ls continually 
growing at a ~ate proportional to the speed of the virtual clock 
multlplled by the fraction of cpu resources which the work class 
ls to recelve. Suppose further that the store of credits for the 
work class ls decremented as members actually consume virtual cpu 
time. Clearly lt ls undesirable to altow credits to bulld up 
indef lnltely for a work class with no processes ready, so a 
maximum value ls set on the number of credits which can be 
accumulated. In addition the value ls restricted from ever 
becoming negative. The algorithm for choslng the next work class 
from which to choose a process to which to award ellglblllty may 
then be as sl11ple as choosing that work class which has 
accumulated the maximum number of credits. 

A worthwhlle refinement would be to choose the work ctass for 
which the ratio of the number of credits to the Quantum to be 
awaraed Cle. to the top member of the given ready queue) ls a 
maximum. This tends to favor the prompt scheduling of the most 
Interactive users across all work classes. It does not cause 
non-interactive work classes to fall far behind since eventual Iv 
the Interactive work classes choke oft. This ls because they are 
te11porarlly using credits faster than they are gaining them, and 
will eventually have a ratio which ls arbitrarily low --- and not 
be chosen. 

It follows that the ~axlmum build up of credits to be allowed 
must be greater than the maximum quantum al lowed. It should 
probably be at least double that a•ou~t. 

The computation required for such an algorithm wlll amount to 
about 300 microseconds per ellglbilitv granted, less lf fewer 
than 1& work classes are defined. If ellglblllty ls awarded 10 
times per second (a high figure> on a one cpu conf lguratlon, the 
loss in system throughput may be about .3z. This ls somewhat 
reduced by the fact that all sorting operations Into the ready 
queue will be replaced by sorts Into shorter queues. 

HARDCORE INTERFACE 

The interfaces to the hardcore scheduler will be the followlngl 

1. A gate to define Cor redefine> the set of work classes and 
their guaranteed percentages of cpu time. This gate ls 
tentatively catled hphcs_Sdefine_work_classes. The target 
of this gate wit I be a new procedure Ctc.ptt) which will 
check the conslstancy of lts arguments, use existing 
subroutines to wire and mask, and lock the APT before 
modlfylng the work class table. Because this procedure will 



HTB-193 Page 5 

not be heavily used lt wlll call wlre_procSwlre_me rather 
than belng per•anentlv wlred. It wlll be illegal to 
undef lne a work class that currentlv has processes ln it. 
If that ls attempted, the processid and work class number of 
one of the "offending .. processes wlll be returned, ln order 
that appropriate action can be taken. 

A gate to reassign one existlng process to a dlfferent work 
class. It wlll refuse to change the work class lf the new 
one ls not defined. It ls tentatively called 
hpncs_Sset_process_work_class. The target of thls gate wlll 
be pxsssset_work_class. 

An additional parameter ln the create_lnfo structure passed 
to hphcs_Screate_proca the lnltlat work class. It wlf I be 
lltegal to specify a work class that ls not defined. It 
wi 11 be necessarv for act _proc, the tar get of 
hphcs_Screate_proc, to call pxsssset_work_class, to Insure 
that the work class belng assigned to the new process 
currently exists. 

A primltlve to simultaneously redefine the work classes and 
reset the work class of each process ls neither reQulred by 
toglcal considerations nor Justlfled by efflclency 
conslderatlons. Furthermore such a primitive would not be able 
to handle an arbltrarlly large number of processes. 

In order to redefine the work classes ln the· general case, it 
will be necessary flrst to define a transitional set of work 
classes and percentages (lnctuding both old and new work 
classes), then to reset the work class of each process to the 
new value, and f lnatly to define the new set of work classes. A 
procedure to do thls wltl be implemented ln the answering 
service. 

SUHHARY OF CURRENT LOAD CONTROL SOFTMARE 

Slnce work class Membership wlll be a function of toad control 
group membership, wo~k class deflnltlons wlll be stored ln the 
HGT, and the lmple•entatlon of the answering service and 
administrator interface to the priority scheduler will consist 
malnly of modlflcatlons to the current load control software, a 
summary of that software. as it now exists, ls presented here. 

Load contro I 
each proJ ec t. 
ab so I ut e 11ax 
independently 

group aeabership ls speclf led in the SAT entry for 
In addition, each proJect•s SAT entry contains an 
user fl gure for that pro J ect that is en forced 

of the load control group llmlts. 

Absentee and daemon processes are not sub)ect to load control. 
,,.. They are always logged ln on reQuest. They are assigned to the 

load control group corresponding to their protects, but their 
group •e•bershlp ls ignored by everyone. 



Page 6 HTB-193 

Load control groups are defined 1n the master_group_table (HGT), 
which ls a blnarv table malntalned by an editor (ed_mgt), and ls 
not subJect to the install dlsclpllne. (1) This table contains 
t l m 1 t parameters tor eacn group, set by the svstem admln 1 strator, 
and It ls also used to hold current load figures for each group, 
during a sessJon. 

The group 11111-ts are def lned ln units of user weight, rather than 
number of users. <There are, ho111ever, I lml ts ln unl ts of users, 
for tne syste11 as .a 111ho I e, and for each proJ ect.) By default, 
each user has a weight of 10, so max_unlts ls ten times 
rnax_users. Melght ls a functlon of the process overseer, and ls 
determined by an arrav of weights kept ln the SAT header. 

There are two sets of llmlt para•eters per group, one used to 
compute prlmarv_max_unlts, the other, to compute 
absolute_max_unlts. Each set contains three parametersl a 
constant Cwhlch 11av be zero), and a nu11erator and denominator of 
a fraction. The foraula for absolute_max_units for a group lss 

absolute_max_unlts = absolute_constant + 
(available_•ax_unl~s•absotute_numerator)/absolute_denomlnator 

where avallable_aax_unlts ls the system_•ax_unlts less the units 
used by the absentee and daemon processes who are not subtect to ~ 
load control. The formula for prlmarv_max_unlts ls the saae, but 
using prlaary_constant, prlmary_numerator, and 
prlmary_denomlnator. 

These calculations are perfor•ed for alt 
attempts to log in, so changes to units 
daemons, changes to svstem_max_unlts, or 
by the system administrator are all 
immediately. 

The svstem_max_unlts f lgure ls elthers 

groups each time a user 
used by absentee or 

changes In the HGT made 
taken Into account 

1. taken from the SAT header, for a special session, or 

2. set by the operator, using the maKu command, In which case 
automatic maxunlts setting ls turned off, or 

3. set auto~atlcally at each shift change and whenever the maxu 
auto command ls given bv the operator. The automatic setting 
looks up the current shift and conflguratlon ln the conflg 
array in lnstallatlon_parms, and chooses the corresponding 

(1) The install dlsclpflne ls a method used for lnstaltlng 
certain crltlcal tables, whereby the Ans111erlng Service Installs 
the table, when reQuested by a system or proJect administrator, 
ensuring that the Answering Service wlll not attempt to reference 
the table while lt ls being updated. 



HTB-193 Page 7 

values fora svstem_max_unlts, . 11ax_absentee_users, 
•ax_absentee_Queue, and response~hlgh and response_lo"• CThe 
latter two figures are used by the l~ad leveler <when lt ls 
enabled bV the maxu level command), which readJusts 
svste• •ax units at everv 15-•lnute accounting update, to 

- - I . . 

keep response between the high and toM figures.) 

The load control declslon ls rather complex, when special 
prlvlleges llke guaranteed togln, the nobump attribute, and 
protection from preemption for a specif led grace tlme are taken 
into account. But basically, lf the svste• ls full <as measured 
by system_max_units or svste11_max_users) then someone must be 
bumped or else the user ls refused login. If the system ls not 
ful 1, but the group or the proJect ls full <as 11easured bv the 
group•s absol~te_max_unlts or the proJect•s max_users), then 
someone ln the group or proJect must be bumped, or else the user 
ls refused login. If the group•s prlmarv::_max_unlts are al I 
allocated but lts absolute_•ax_unlts are not, then the user ls 
logged ln as a secondary user, subJect to preemption. Secondary 
users <ln anv group) are the· fl~st to be bumped (oldest flrst> 
when some primary user wants to log ln, followed by primary users 
< ln the same group) whose grace t l•e · has expired, fol I owed by 
practically anybody, when a user with the guaranteed I ogln 
attribute ls trvlng to log ln. 

The load control group aembershlp of a process never changes, but 
both the proportion of the avallable_max_unlts that each group 
gets, and the number Itself, can vary with the 
avalf able_max_unlts <whlch varies wlth shlf t, conf 1guratlon, and 
absentee and daemon load), because ~f the max_unlts formula 
described above. 

NEW ANSWERING SERVICE AND ADMINISTRATOR INTERFACE 

The HGT wlll be reforaatted to hold work class deflnltlons as 
well as load control group deflnltlons. Since there wlll be a 
maximum of 1& work classes, but there ls currently no restriction 
on the nu•ber of load control groups, the new HGT wlll consist of 
a header, followed by a fixed-length array of 16 work class 
deflnltlons, followed by a varlable•tength array of load control 
group deflnltlons. The header and the load control group 
deflnltlons will remain essentially unchanged, except that each 
load control group definltlon wlfl contain two additional 
8-ele•ent arrays, speclfylng the work classes to which 
Interactive and absentee users In that load control group belong 
on each shlft. 

One or •ore load control groups can belong to each work class. 
The max_users and max_unlts figures for each work class will be 
the sum of the corresponding figures for the load control groups 
that make up the work class. The work class maxlma wilt not 
actually be computed and stored anywhere by the answering 
service, but they wilt be displayed by ed_mgt to assist the 



Page 8 HTB-193 

system admlnlstrator ln asslgnlng reasonably consistent 
percentages to th·e Mork classes and 11ax user and unl t fl gures to 
the load control groups. The nor11al operation of load control, 
as described above, wlll llmlt the number of processes in each 
work c I ass. 

The ed_mgt com11and will be modlfled to be able to store and 
modify the work class para•eters, to verify, on request, the 
correctness, reasonableness, and consistency of work class 
parameters and the corresponding load control group deflnltions, 
and to print work class deflnltlons and a cross r-eference showing 
the correspondence between load control groups and work classes. 
The changes to ed_.mgt are described in detail in a later section. 

The install command wJ.11 be modified (and a new procedure, 
up_mgt_, will be written) so that the HGT can be installed while 
the system ls up and users are logged in. up_mgt_ will have to, 
in general, reset the work class of all existing processes to the 
work class specified ln the newly-installed HGT. 

The answer table (and daemon and absentee user tables), and the 
create_info structure passed to hphcs_screate_proc, will have a 
new ~arlable, work_class, added. 

load_ctl_Sload_ctl_lnit tdll call hphcs_Sdefine_work_classes, to """"' 
def lne the work classes to be used by the scheduler, during 
answering service lnltlallzatlon. <This cal I must be made before 
the daemons are logged In.) 

load_ctl_Sset_•axun1ts, which ls called at each shift change Cas 
well as during tne second half of answering service 
1nltiallzatlon9 and whenever the operator command •maxu auto• ls 
glvent Milt redefine the work classes, as speclfed for the 
current shift in the HGT, and will reset the work class of each 
existing process as reQulred. 

Since the function of redefining the 
resetting the work classes of all 
perfor•ed both at shift change and 
installed, it will be implemented as a 
J.n both situations. 

current work classes and 
existing processes must be 

whenever a new MGT ls 
separate procedure, called 

To support the asslgn•ent of work classes on the basis of person 
as well as proJect, the SAT and POT, and the procedures which 
compile, edit, and lnstal t them, will be modi fled to allow a load 
control group to be specified for an lndlvldual user rather than 
Just for a whole pro)ect. 

A new attribute, !group Clndlvidual groupt, wlll be created. When 
that attribute ls on ln the SAT entry for a proJect, lt permits 
the load control group for users on that proJect to be specified 
in the POT entry for any user on that proJect. Cif that attribute 
ls not on ln the SAT entry, then all users on the project will 



ttTB-193 Page CJ 

continue to belong to the load control group specif led ln the 
proJect•s SAT entry.) When the !group attribute ls on in the POT 
entry for an individual user, it indicates that a load control 
group ls specified in that user•s POT entry. (If !group ls not 
on in a user•s POT entry, that user will continue to be a me•ber 
of the toad control group specif led ln the proJect•s SAT entry.) 
The name of the lndivldual user•s load control group wlll be 
stored ln a presently unused pad f leld ln the POT entry. This, 
plus the use of !group ln the POT entry as a posltlve lndlcatlon 
that a group ls speclfled, wllt allow this change to be Installed 
without reQulrlng that any existing PoT•s be refor•atted or 
reinstalled. 

lg_ctl_ will be •odlfled to assign a load control group on the 
basls of person as well as proJect, as described above. 

load_ctl_ wlll be modified to use the load control group of each 
process to assign lt to the work class specified in the HGT for 
absentee or Interactive users In that group, on the current 
shift. COaemon processes will be treated as lnteractlve, for the 
purpose of work class assignment.) The assigned work class will 
be stored in the answer table Cor absentee or daemon user table) 
entry for the process. 

cpg_ wltl copy the work class from the ans•er table entry into 
the create_lnfo structure, before calling hphcs_Screate_proc. 

INSTALLATION PROCEDURE 

The hardcor.e system containing the priority scheduler, and the 
answering service contaln1ng the above •odlflcatlons, can be 
lnstalled In either order. If hPhcs_Sdefine_work_classes ls not 
called, a slngle work class Cwork class 1> wlll exlst by default, 
and wlll have a percentage of 100%. The version number of the 
create lnfo structure wilt allow act_proc fthe ring zero 
procedure called via hphcs_Screate_proc) to determine lf the new 
verslon, containing the work class, has been passed. If the old 
version of create_lnfo ls used, act_proc wlll assign processes to 
work class 1 by default. Thls allows the hardcore system to be 
installed first. 

The new answering service wltl check for the old for•at HGT, and 
if it ls found, none of the new gates wlll be catted, and every 
process wlll be assigned to work class 1. Independent of their 
load control group membership. Further, a switch ln the 
reformatted HGT, settable by ed_~gt, wlll allow this mode of 
operation to be specif led by the system administrator after the 
HGT ls refor•atted. Finally, a check for the existence of 
hphcs_Sdefine_work_classes wlll be made during answering service 
lnltlatlzation, and lf It ls not present, the old mode of 
operation wllt be used. Thls will make the new answering servlce 
compatible with older system tapes. It wlll also cause the 
svste• to run as it does now, with only one work class, when both 



Page 10 HTB-193 

the new answerlng service and the new hardcore system are 
Installed. The new scheduler wlll not be turned on untlt the HGT 
ls reformatted. and the system administrator exotlcltly enables 
lt. 

The system ad•inlstrator will, of course, b~ Informed of all thls 
in release documentation. The first time he uses the new ed_mgt, 
lt will recognize the old format HGT, f"efor11at it a·utonaaticafly, 
deflne a single work class (work class 1> wlth a percentage of 
1oox, make all toad control groups members of it, and then lnvlte 
the system adalnlstrator to def lne more work c I asses and reassl gn 
the load control groups to them. It wilt not be required that 
the administrator do so 9 but ed_mgt wlll keep remlndlng hlm, 
every tlme he uses lt, until he does. 

Since the HGT will now be sub)ect to the lnstal I dlscipllne, the 
reformatted copy can not be put back in >sc1. When the •w• 
request ls given, the reformatted HGT (named HGT.mgt> will be 
written In the wor~ing directory of the administrator (which 
should be >udd>sa>ad•in). The administrator will be told about 
thls by ed_mgt. Except for the instance when the HGT ls 
reformatted, tfte edited HGT will be written back lnto the input 
HGT, as ls done now. Ho~ever, the system ad•lnistrator will not 
be editing the >sc1 copy any more. As a convenlence, after 
wrltlng the edited copy back Into the original. ed_mgt will 
always ask •1nsta111•, and lf the answer ls yes, it wll I ·invoke 
the lnstatl command. The admlnistrator will of course be able to 
invoke lt directly. 

The lnstal lation procedures described above wllt make testing and 
lnltlal lnstallatlon of the system verv convenient, and lt will 
also allow the system admlnlstrator at each customer site to turn 
on the priority scheduler at his convenience, instead of forcing 
hill to deflne some Cposslbly ill-considered) work classes, Just 
to get the new system release to run. 

CHANGES TO ed_mgt 

Summary of Current ed_mgt 

The following sum•ary describes only those features that are 
being changed. The MGT, as seen bV a user of ed_mgt, ls an array 
of toad control group deflnltlons. The find (f) request posltions 
the current pointer to the speclfled group. The next (n), top 
<t>, ana - (minus sign) requests move the current pointer forward 
or backward in the array. The change (c) request changes 
para•eters of the current group. The print (p) request prints all 
information about the current group. The pall (pa, p•) request 
prints all lnfof"matlon about all groups. Only the find and change 
requests take af"guments. Their formats ares 

f lnd 
chat\ge 

<group name> 
<code> <new value> C<code> <new value> ••• J • 



r 
HTB-193 Page 11 

where <code> ls the na•e of the para•eter to be changed. Typing 
these requests without arguments causes ed_mgt to prompt the user 
for them. The change request puts ed_mgt Into the change 
subcommand, ln whlch <code> <new value> palrs are accepted. The 
asterisk at the end of the line exits from the change subcommand 
and returns to ed_mgt request level. 

Summary of New Features 

The find req~est will be modified so that a <group name> 
consisting of one of the Integers 1 through 16 will refer to the 
corresponding work class. 

The next, top, and - requests will be modified to print the name 
and type of the entry being pointed at after the pointer ls 
moved. 

The change request will be modified so that the set of codes 
accepted wlll be different, depending on which type of entry 
(work class or load control group) the current pointer ls 
pointing at. New codes and other arguments wlll be added, to 
allow parameters of work classes, and the work class membership 
of load control groups, to be edited. 

A new request, global_change (gc), wlll be added, to allow the 
same (set of) cnangeCs> to be made to all work classes or to all 
load control groups. 

A new request, verify Cv), will be added, to request that ed_mgt 
check all .the work-class-related paraaeters ln the edlted HGT, 
and report any errors or warnings that would be recelved lf the 
HGT were to be installed. 

The print and pall requests wlll be changed to print the new 
parameters, and the pall request will take arguments, requesting 
that all work classes, or all load control groups, or both, be 
printed, or that a cross reference of work classes and load 
control groups be prlnted. 

Detailed Oescrlotlons of New Features 

Two new formats for the change request wlll be added• 

change <code> C<shlft speclficatlon>J <one or •ore values> 

change <code> C<shlft spec.>J <inte~actlvelabsentee> <value(s)> 

The first ls used when editing work class para•eters; the second, 
while changing the work class membership of a load control group. 



Page 12 MTB-193 

The follo~lng new <cod~>·s can be used ln the above requests: 

percent 
absentee 
~efined. 
work_c'l'·ass 

(pct, X> 
(abs) 
Cdef) 
(we) 

The f lr-st three are used with the f lrst form of 
request, to edlt work c I ass para•eters. The fourth 
the second f·orm, to· chan·ge the work cl ass 11e11bersh.lp 
control group. 

the change 
ls used wlth 
of a load 

The for•at of th& <shift speclf lcatlon> ls the word •shift• 
f o I towed by a s-h•lft number or a range of shl ft numbers <two 
nu•bers separated by a hyphen, the second greater than the 
f lrstt 1 

shift <number>l<number>-<number> 

The shift speclflcation ls optional. If lt ls omitted, the 
default is a functlon o·f how many values are supptled. If one 
value ls supp~ied, Jt ls assigned to all 8 shifts. If a llst of 
values ls supolled, they are assigned to shifts o, 1, ••• , 
respectively, and shlfts for which values are not supplied are 
not changed. ~ 

The following relatlonshlp exists between the shift speclflcatlon 
and the list of values& when a range of shifts ls specified, a 
single data walue ls expected, and ls assigned to all shifts ln 
that range; when a single shift ls soeclfled, one or more values 
may be supplied, and they are asslg~ed t~ shifts, ln order, 
starting with the specified shift. 

<lnteractlvelabsentee> can bel 

Interactive Clntt 
absentee Cabs) 

Thls argument ls used when setting the work class of a load 
control group. Separate work classes may be specif led for 
interactive ~nd absentee processes ln the load control group, on 
each shift. If this argument ls omitted, but the work class 
value(s) are given, the default ls lnteractlve. 

The work class parameters "defined• and •absentee• can have 
values of "off" or "on" Cor "O" or •1">. Thev are per-shift 
switches, that indicate respectively, whether the work class ls 
defined on the given shlf t, and whether absentee processes are 
permitted in lt on that shift. 



• 

MTB-193 Page 13 

The format of the globat_change request wil I bel 

gc <type> <arguments acceptable to the change request> 

where <type> can bel 

load_control_group <leg) 
work_class <we) 

The effect of this co••and will be to make each change (specified 
by a change subcommand) to all entries of the specified type. 

The format of the pall (print aft) reQuest wit I bel 

Pall <type> 

where <type> can bel 

load_control_group (leg) 
work_class (we) 
cross_reference (cref, xref) 

If <type> ls omitted, the default will be to print all three sets 
of information. 

Examples a 

change ~ 10 • 
change X shift O 10 10 10 10 10 10 10 10 • 
change pct shift 0-7 tD • 

The above are equivalent ways of assigning tOY. to the current 
work class on all shifts. 

change X shift 1 50 X shift 2-4 30 • 

The above reQuest is equivalent to the following two requests• 

change X shift 1 50 • 
change X shift 2-4 30 • 

c we Int shift 1 3 wc shift 2-4 int 2 we abs 1 • 

The above sets the interactive work class of the current load 
control group to 3 on shift 1 and to z on shifts 2-4, and the 
absentee work class on al I 8 shifts to 1. Notice that the shift 
specification and the lnteractlvelabsentee indicator may appear 
In either order. 

gc we defined shift O off defined shift 5-7 off • 

The above wlll set all work classes to undefined except on shlfts 
1-4. This would be useful at an instal tatlon "here ontv shifts 



Page 14 

1-4 were 
commands, 
printed. 

HTB-193 

ln use, to si•Pllfy the output of the print and pall 
since lnformatlon about undefined shifts ls not 

Note that, in the examples, a period ls used to terminate the 
change request tines Instead of an asterisk. In the new ed_mgt, a 
period wltl be accepted for that function, in addltlon to an 
asterisk, for compatlbllltv wlth other Huttlcs edltors. 

The exaaples show all required arguments supplied on a slngle 
llne. ed_mgt wilt Pf"'O•Pt for missing values. The exa•P\e above, 
ln which the percents for shifts 1 and 2-4 were changed, would 
look llke thls lf the user typed only what was requested (! 
lndlcates prompting messages>• 

t type& 
change 

! code I 
x 

! Shlf ta 
1 

! vatue(s)I 
50 

! code I 

" I shift I 
2-4 

! value• 
30 

! code I 
• 

I type I 

-· 

~ 


